CVEdetails.com the ultimate security vulnerability data source
(e.g.: CVE-2009-1234 or 2010-1234 or 20101234)
Log In   Register
  What's the CVSS score of your company?
Vulnerability Feeds & WidgetsNew   www.itsecdb.com  

XEN : Security Vulnerabilities

Press ESC to close
# CVE ID CWE ID # of Exploits Vulnerability Type(s) Publish Date Update Date Score Gained Access Level Access Complexity Authentication Conf. Integ. Avail.
1 CVE-2021-28710 269 2021-11-21 2021-11-23
6.9
None Local Medium Not required Complete Complete Complete
certain VT-d IOMMUs may not work in shared page table mode For efficiency reasons, address translation control structures (page tables) may (and, on suitable hardware, by default will) be shared between CPUs, for second-level translation (EPT), and IOMMUs. These page tables are presently set up to always be 4 levels deep. However, an IOMMU may require the use of just 3 page table levels. In such a configuration the lop level table needs to be stripped before inserting the root table's address into the hardware pagetable base register. When sharing page tables, Xen erroneously skipped this stripping. Consequently, the guest is able to write to leaf page table entries.
2 CVE-2021-28702 269 Mem. Corr. 2021-10-06 2021-11-28
4.6
None Local Low Not required Partial Partial Partial
PCI devices with RMRRs not deassigned correctly Certain PCI devices in a system might be assigned Reserved Memory Regions (specified via Reserved Memory Region Reporting, "RMRR"). These are typically used for platform tasks such as legacy USB emulation. If such a device is passed through to a guest, then on guest shutdown the device is not properly deassigned. The IOMMU configuration for these devices which are not properly deassigned ends up pointing to a freed data structure, including the IO Pagetables. Subsequent DMA or interrupts from the device will have unpredictable behaviour, ranging from IOMMU faults to memory corruption.
3 CVE-2021-28701 269 2021-09-08 2021-09-25
4.4
None Local Medium Not required Partial Partial Partial
Another race in XENMAPSPACE_grant_table handling Guests are permitted access to certain Xen-owned pages of memory. The majority of such pages remain allocated / associated with a guest for its entire lifetime. Grant table v2 status pages, however, are de-allocated when a guest switches (back) from v2 to v1. Freeing such pages requires that the hypervisor enforce that no parallel request can result in the addition of a mapping of such a page to a guest. That enforcement was missing, allowing guests to retain access to pages that were freed and perhaps re-used for other purposes. Unfortunately, when XSA-379 was being prepared, this similar issue was not noticed.
4 CVE-2021-28700 770 2021-08-27 2021-09-24
6.8
None Remote Low ??? None None Complete
xen/arm: No memory limit for dom0less domUs The dom0less feature allows an administrator to create multiple unprivileged domains directly from Xen. Unfortunately, the memory limit from them is not set. This allow a domain to allocate memory beyond what an administrator originally configured.
5 CVE-2021-28699 2021-08-27 2021-09-24
4.9
None Local Low Not required None None Complete
inadequate grant-v2 status frames array bounds check The v2 grant table interface separates grant attributes from grant status. That is, when operating in this mode, a guest has two tables. As a result, guests also need to be able to retrieve the addresses that the new status tracking table can be accessed through. For 32-bit guests on x86, translation of requests has to occur because the interface structure layouts commonly differ between 32- and 64-bit. The translation of the request to obtain the frame numbers of the grant status table involves translating the resulting array of frame numbers. Since the space used to carry out the translation is limited, the translation layer tells the core function the capacity of the array within translation space. Unfortunately the core function then only enforces array bounds to be below 8 times the specified value, and would write past the available space if enough frame numbers needed storing.
6 CVE-2021-28698 835 2021-08-27 2021-09-24
4.9
None Local Low Not required None None Complete
long running loops in grant table handling In order to properly monitor resource use, Xen maintains information on the grant mappings a domain may create to map grants offered by other domains. In the process of carrying out certain actions, Xen would iterate over all such entries, including ones which aren't in use anymore and some which may have been created but never used. If the number of entries for a given domain is large enough, this iterating of the entire table may tie up a CPU for too long, starving other domains or causing issues in the hypervisor itself. Note that a domain may map its own grants, i.e. there is no need for multiple domains to be involved here. A pair of "cooperating" guests may, however, cause the effects to be more severe.
7 CVE-2021-28697 269 2021-08-27 2021-09-24
4.6
None Local Low Not required Partial Partial Partial
grant table v2 status pages may remain accessible after de-allocation Guest get permitted access to certain Xen-owned pages of memory. The majority of such pages remain allocated / associated with a guest for its entire lifetime. Grant table v2 status pages, however, get de-allocated when a guest switched (back) from v2 to v1. The freeing of such pages requires that the hypervisor know where in the guest these pages were mapped. The hypervisor tracks only one use within guest space, but racing requests from the guest to insert mappings of these pages may result in any of them to become mapped in multiple locations. Upon switching back from v2 to v1, the guest would then retain access to a page that was freed and perhaps re-used for other purposes.
8 CVE-2021-28696 863 2021-08-27 2021-09-24
4.6
None Local Low Not required Partial Partial Partial
IOMMU page mapping issues on x86 T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Both AMD and Intel allow ACPI tables to specify regions of memory which should be left untranslated, which typically means these addresses should pass the translation phase unaltered. While these are typically device specific ACPI properties, they can also be specified to apply to a range of devices, or even all devices. On all systems with such regions Xen failed to prevent guests from undoing/replacing such mappings (CVE-2021-28694). On AMD systems, where a discontinuous range is specified by firmware, the supposedly-excluded middle range will also be identity-mapped (CVE-2021-28695). Further, on AMD systems, upon de-assigment of a physical device from a guest, the identity mappings would be left in place, allowing a guest continued access to ranges of memory which it shouldn't have access to anymore (CVE-2021-28696).
9 CVE-2021-28695 2021-08-27 2021-09-24
4.6
None Local Low Not required Partial Partial Partial
IOMMU page mapping issues on x86 T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Both AMD and Intel allow ACPI tables to specify regions of memory which should be left untranslated, which typically means these addresses should pass the translation phase unaltered. While these are typically device specific ACPI properties, they can also be specified to apply to a range of devices, or even all devices. On all systems with such regions Xen failed to prevent guests from undoing/replacing such mappings (CVE-2021-28694). On AMD systems, where a discontinuous range is specified by firmware, the supposedly-excluded middle range will also be identity-mapped (CVE-2021-28695). Further, on AMD systems, upon de-assigment of a physical device from a guest, the identity mappings would be left in place, allowing a guest continued access to ranges of memory which it shouldn't have access to anymore (CVE-2021-28696).
10 CVE-2021-28694 287 2021-08-27 2021-09-24
4.6
None Local Low Not required Partial Partial Partial
IOMMU page mapping issues on x86 T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Both AMD and Intel allow ACPI tables to specify regions of memory which should be left untranslated, which typically means these addresses should pass the translation phase unaltered. While these are typically device specific ACPI properties, they can also be specified to apply to a range of devices, or even all devices. On all systems with such regions Xen failed to prevent guests from undoing/replacing such mappings (CVE-2021-28694). On AMD systems, where a discontinuous range is specified by firmware, the supposedly-excluded middle range will also be identity-mapped (CVE-2021-28695). Further, on AMD systems, upon de-assigment of a physical device from a guest, the identity mappings would be left in place, allowing a guest continued access to ranges of memory which it shouldn't have access to anymore (CVE-2021-28696).
11 CVE-2021-28693 2021-06-30 2021-09-21
2.1
None Local Low Not required Partial None None
xen/arm: Boot modules are not scrubbed The bootloader will load boot modules (e.g. kernel, initramfs...) in a temporary area before they are copied by Xen to each domain memory. To ensure sensitive data is not leaked from the modules, Xen must "scrub" them before handing the page over to the allocator. Unfortunately, it was discovered that modules will not be scrubbed on Arm.
12 CVE-2021-28692 269 2021-06-30 2021-07-12
5.6
None Local Low Not required Partial None Complete
inappropriate x86 IOMMU timeout detection / handling IOMMUs process commands issued to them in parallel with the operation of the CPU(s) issuing such commands. In the current implementation in Xen, asynchronous notification of the completion of such commands is not used. Instead, the issuing CPU spin-waits for the completion of the most recently issued command(s). Some of these waiting loops try to apply a timeout to fail overly-slow commands. The course of action upon a perceived timeout actually being detected is inappropriate: - on Intel hardware guests which did not originally cause the timeout may be marked as crashed, - on AMD hardware higher layer callers would not be notified of the issue, making them continue as if the IOMMU operation succeeded.
13 CVE-2021-28690 2021-06-29 2021-09-21
4.0
None Remote Low ??? Partial None None
x86: TSX Async Abort protections not restored after S3 This issue relates to the TSX Async Abort speculative security vulnerability. Please see https://xenbits.xen.org/xsa/advisory-305.html for details. Mitigating TAA by disabling TSX (the default and preferred option) requires selecting a non-default setting in MSR_TSX_CTRL. This setting isn't restored after S3 suspend.
14 CVE-2021-28689 119 Exec Code Overflow 2021-06-11 2021-06-24
2.1
None Local Low Not required Partial None None
x86: Speculative vulnerabilities with bare (non-shim) 32-bit PV guests 32-bit x86 PV guest kernels run in ring 1. At the time when Xen was developed, this area of the i386 architecture was rarely used, which is why Xen was able to use it to implement paravirtualisation, Xen's novel approach to virtualization. In AMD64, Xen had to use a different implementation approach, so Xen does not use ring 1 to support 64-bit guests. With the focus now being on 64-bit systems, and the availability of explicit hardware support for virtualization, fixing speculation issues in ring 1 is not a priority for processor companies. Indirect Branch Restricted Speculation (IBRS) is an architectural x86 extension put together to combat speculative execution sidechannel attacks, including Spectre v2. It was retrofitted in microcode to existing CPUs. For more details on Spectre v2, see: http://xenbits.xen.org/xsa/advisory-254.html However, IBRS does not architecturally protect ring 0 from predictions learnt in ring 1. For more details, see: https://software.intel.com/security-software-guidance/deep-dives/deep-dive-indirect-branch-restricted-speculation Similar situations may exist with other mitigations for other kinds of speculative execution attacks. The situation is quite likely to be similar for speculative execution attacks which have yet to be discovered, disclosed, or mitigated.
15 CVE-2021-28687 909 2021-06-11 2021-09-20
4.9
None Local Low Not required None None Complete
HVM soft-reset crashes toolstack libxl requires all data structures passed across its public interface to be initialized before use and disposed of afterwards by calling a specific set of functions. Many internal data structures also require this initialize / dispose discipline, but not all of them. When the "soft reset" feature was implemented, the libxl__domain_suspend_state structure didn't require any initialization or disposal. At some point later, an initialization function was introduced for the structure; but the "soft reset" path wasn't refactored to call the initialization function. When a guest nwo initiates a "soft reboot", uninitialized data structure leads to an assert() when later code finds the structure in an unexpected state. The effect of this is to crash the process monitoring the guest. How this affects the system depends on the structure of the toolstack. For xl, this will have no security-relevant effect: every VM has its own independent monitoring process, which contains no state. The domain in question will hang in a crashed state, but can be destroyed by `xl destroy` just like any other non-cooperating domain. For daemon-based toolstacks linked against libxl, such as libvirt, this will crash the toolstack, losing the state of any in-progress operations (localized DoS), and preventing further administrator operations unless the daemon is configured to restart automatically (system-wide DoS). If crashes "leak" resources, then repeated crashes could use up resources, also causing a system-wide DoS.
16 CVE-2021-28039 400 2021-03-05 2021-04-09
2.1
None Local Low Not required None None Partial
An issue was discovered in the Linux kernel 5.9.x through 5.11.3, as used with Xen. In some less-common configurations, an x86 PV guest OS user can crash a Dom0 or driver domain via a large amount of I/O activity. The issue relates to misuse of guest physical addresses when a configuration has CONFIG_XEN_UNPOPULATED_ALLOC but not CONFIG_XEN_BALLOON_MEMORY_HOTPLUG.
17 CVE-2021-28038 770 DoS 2021-03-05 2021-04-09
4.9
None Local Low Not required None None Complete
An issue was discovered in the Linux kernel through 5.11.3, as used with Xen PV. A certain part of the netback driver lacks necessary treatment of errors such as failed memory allocations (as a result of changes to the handling of grant mapping errors). A host OS denial of service may occur during misbehavior of a networking frontend driver. NOTE: this issue exists because of an incomplete fix for CVE-2021-26931.
18 CVE-2021-27379 269 DoS +Priv 2021-02-18 2021-04-11
5.9
None Local Medium Not required Partial Partial Complete
An issue was discovered in Xen through 4.11.x, allowing x86 Intel HVM guest OS users to achieve unintended read/write DMA access, and possibly cause a denial of service (host OS crash) or gain privileges. This occurs because a backport missed a flush, and thus IOMMU updates were not always correct. NOTE: this issue exists because of an incomplete fix for CVE-2020-15565.
19 CVE-2021-26933 Bypass 2021-02-17 2021-04-11
2.1
None Local Low Not required Partial None None
An issue was discovered in Xen 4.9 through 4.14.x. On Arm, a guest is allowed to control whether memory accesses are bypassing the cache. This means that Xen needs to ensure that all writes (such as the ones during scrubbing) have reached the memory before handing over the page to a guest. Unfortunately, the operation to clean the cache is happening before checking if the page was scrubbed. Therefore there is no guarantee when all the writes will reach the memory.
20 CVE-2021-3308 DoS 2021-01-26 2021-07-12
4.9
None Local Low Not required None None Complete
An issue was discovered in Xen 4.12.3 through 4.12.4 and 4.13.1 through 4.14.x. An x86 HVM guest with PCI pass through devices can force the allocation of all IDT vectors on the system by rebooting itself with MSI or MSI-X capabilities enabled and entries setup. Such reboots will leak any vectors used by the MSI(-X) entries that the guest might had enabled, and hence will lead to vector exhaustion on the system, not allowing further PCI pass through devices to work properly. HVM guests with PCI pass through devices can mount a Denial of Service (DoS) attack affecting the pass through of PCI devices to other guests or the hardware domain. In the latter case, this would affect the entire host.
21 CVE-2020-29571 476 DoS 2020-12-15 2021-07-12
4.9
None Local Low Not required None None Complete
An issue was discovered in Xen through 4.14.x. A bounds check common to most operation time functions specific to FIFO event channels depends on the CPU observing consistent state. While the producer side uses appropriately ordered writes, the consumer side isn't protected against re-ordered reads, and may hence end up de-referencing a NULL pointer. Malicious or buggy guest kernels can mount a Denial of Service (DoS) attack affecting the entire system. Only Arm systems may be vulnerable. Whether a system is vulnerable depends on the specific CPU. x86 systems are not vulnerable.
22 CVE-2020-29570 770 DoS 2020-12-15 2021-07-12
4.9
None Local Low Not required None None Complete
An issue was discovered in Xen through 4.14.x. Recording of the per-vCPU control block mapping maintained by Xen and that of pointers into the control block is reversed. The consumer assumes, seeing the former initialized, that the latter are also ready for use. Malicious or buggy guest kernels can mount a Denial of Service (DoS) attack affecting the entire system.
23 CVE-2020-29569 252 +Info 2020-12-15 2021-07-21
7.2
None Local Low Not required Complete Complete Complete
An issue was discovered in the Linux kernel through 5.10.1, as used with Xen through 4.14.x. The Linux kernel PV block backend expects the kernel thread handler to reset ring->xenblkd to NULL when stopped. However, the handler may not have time to run if the frontend quickly toggles between the states connect and disconnect. As a consequence, the block backend may re-use a pointer after it was freed. A misbehaving guest can trigger a dom0 crash by continuously connecting / disconnecting a block frontend. Privilege escalation and information leaks cannot be ruled out. This only affects systems with a Linux blkback.
24 CVE-2020-29568 119 Overflow 2020-12-15 2021-07-21
4.9
None Local Low Not required None None Complete
An issue was discovered in Xen through 4.14.x. Some OSes (such as Linux, FreeBSD, and NetBSD) are processing watch events using a single thread. If the events are received faster than the thread is able to handle, they will get queued. As the queue is unbounded, a guest may be able to trigger an OOM in the backend. All systems with a FreeBSD, Linux, or NetBSD (any version) dom0 are vulnerable.
25 CVE-2020-29567 770 DoS 2020-12-15 2021-07-12
4.9
None Local Low Not required None None Complete
An issue was discovered in Xen 4.14.x. When moving IRQs between CPUs to distribute the load of IRQ handling, IRQ vectors are dynamically allocated and de-allocated on the relevant CPUs. De-allocation has to happen when certain constraints are met. If these conditions are not met when first checked, the checking CPU may send an interrupt to itself, in the expectation that this IRQ will be delivered only after the condition preventing the cleanup has cleared. For two specific IRQ vectors, this expectation was violated, resulting in a continuous stream of self-interrupts, which renders the CPU effectively unusable. A domain with a passed through PCI device can cause lockup of a physical CPU, resulting in a Denial of Service (DoS) to the entire host. Only x86 systems are vulnerable. Arm systems are not vulnerable. Only guests with physical PCI devices passed through to them can exploit the vulnerability.
26 CVE-2020-29566 674 DoS Overflow 2020-12-15 2021-07-12
4.9
None Local Low Not required None None Complete
An issue was discovered in Xen through 4.14.x. When they require assistance from the device model, x86 HVM guests must be temporarily de-scheduled. The device model will signal Xen when it has completed its operation, via an event channel, so that the relevant vCPU is rescheduled. If the device model were to signal Xen without having actually completed the operation, the de-schedule / re-schedule cycle would repeat. If, in addition, Xen is resignalled very quickly, the re-schedule may occur before the de-schedule was fully complete, triggering a shortcut. This potentially repeating process uses ordinary recursive function calls, and thus could result in a stack overflow. A malicious or buggy stubdomain serving a HVM guest can cause Xen to crash, resulting in a Denial of Service (DoS) to the entire host. Only x86 systems are affected. Arm systems are not affected. Only x86 stubdomains serving HVM guests can exploit the vulnerability.
27 CVE-2020-29487 770 DoS 2020-12-15 2021-07-12
7.8
None Remote Low Not required None None Complete
An issue was discovered in Xen XAPI before 2020-12-15. Certain xenstore keys provide feedback from the guest, and are therefore watched by toolstack. Specifically, keys are watched by xenopsd, and data are forwarded via RPC through message-switch to xapi. The watching logic in xenopsd sends one RPC update containing all data, any time any single xenstore key is updated, and therefore has O(N^2) time complexity. Furthermore, message-switch retains recent (currently 128) RPC messages for diagnostic purposes, yielding O(M*N) space complexity. The quantity of memory a single guest can monopolise is bounded by xenstored quota, but the quota is fairly large. It is believed to be in excess of 1G per malicious guest. In practice, this manifests as a host denial of service, either through message-switch thrashing against swap, or OOMing entirely, depending on dom0's configuration. (There are no quotas in xenopsd to limit the quantity of keys that result in RPC traffic.) A buggy or malicious guest can cause unreasonable memory usage in dom0, resulting in a host denial of service. All versions of XAPI are vulnerable. Systems that are not using the XAPI toolstack are not vulnerable.
28 CVE-2020-29486 770 DoS 2020-12-15 2021-07-12
4.9
None Local Low Not required None None Complete
An issue was discovered in Xen through 4.14.x. Nodes in xenstore have an ownership. In oxenstored, a owner could give a node away. However, node ownership has quota implications. Any guest can run another guest out of quota, or create an unbounded number of nodes owned by dom0, thus running xenstored out of memory A malicious guest administrator can cause a denial of service against a specific guest or against the whole host. All systems using oxenstored are vulnerable. Building and using oxenstored is the default in the upstream Xen distribution, if the Ocaml compiler is available. Systems using C xenstored are not vulnerable.
29 CVE-2020-29485 401 2020-12-15 2021-03-16
4.9
None Local Low Not required None None Complete
An issue was discovered in Xen 4.6 through 4.14.x. When acting upon a guest XS_RESET_WATCHES request, not all tracking information is freed. A guest can cause unbounded memory usage in oxenstored. This can lead to a system-wide DoS. Only systems using the Ocaml Xenstored implementation are vulnerable. Systems using the C Xenstored implementation are not vulnerable.
30 CVE-2020-29484 476 DoS 2020-12-15 2021-03-16
4.9
None Local Low Not required None None Complete
An issue was discovered in Xen through 4.14.x. When a Xenstore watch fires, the xenstore client that registered the watch will receive a Xenstore message containing the path of the modified Xenstore entry that triggered the watch, and the tag that was specified when registering the watch. Any communication with xenstored is done via Xenstore messages, consisting of a message header and the payload. The payload length is limited to 4096 bytes. Any request to xenstored resulting in a response with a payload longer than 4096 bytes will result in an error. When registering a watch, the payload length limit applies to the combined length of the watched path and the specified tag. Because watches for a specific path are also triggered for all nodes below that path, the payload of a watch event message can be longer than the payload needed to register the watch. A malicious guest that registers a watch using a very large tag (i.e., with a registration operation payload length close to the 4096 byte limit) can cause the generation of watch events with a payload length larger than 4096 bytes, by writing to Xenstore entries below the watched path. This will result in an error condition in xenstored. This error can result in a NULL pointer dereference, leading to a crash of xenstored. A malicious guest administrator can cause xenstored to crash, leading to a denial of service. Following a xenstored crash, domains may continue to run, but management operations will be impossible. Only C xenstored is affected, oxenstored is not affected.
31 CVE-2020-29483 416 DoS 2020-12-15 2021-03-16
4.9
None Local Low Not required None None Complete
An issue was discovered in Xen through 4.14.x. Xenstored and guests communicate via a shared memory page using a specific protocol. When a guest violates this protocol, xenstored will drop the connection to that guest. Unfortunately, this is done by just removing the guest from xenstored's internal management, resulting in the same actions as if the guest had been destroyed, including sending an @releaseDomain event. @releaseDomain events do not say that the guest has been removed. All watchers of this event must look at the states of all guests to find the guest that has been removed. When an @releaseDomain is generated due to a domain xenstored protocol violation, because the guest is still running, the watchers will not react. Later, when the guest is actually destroyed, xenstored will no longer have it stored in its internal data base, so no further @releaseDomain event will be sent. This can lead to a zombie domain; memory mappings of that guest's memory will not be removed, due to the missing event. This zombie domain will be cleaned up only after another domain is destroyed, as that will trigger another @releaseDomain event. If the device model of the guest that violated the Xenstore protocol is running in a stub-domain, a use-after-free case could happen in xenstored, after having removed the guest from its internal data base, possibly resulting in a crash of xenstored. A malicious guest can block resources of the host for a period after its own death. Guests with a stub domain device model can eventually crash xenstored, resulting in a more serious denial of service (the prevention of any further domain management operations). Only the C variant of Xenstore is affected; the Ocaml variant is not affected. Only HVM guests with a stubdom device model can cause a serious DoS.
32 CVE-2020-29482 426 2020-12-15 2021-03-16
4.9
None Local Low Not required None None Complete
An issue was discovered in Xen through 4.14.x. A guest may access xenstore paths via absolute paths containing a full pathname, or via a relative path, which implicitly includes /local/domain/$DOMID for their own domain id. Management tools must access paths in guests' namespaces, necessarily using absolute paths. oxenstored imposes a pathname limit that is applied solely to the relative or absolute path specified by the client. Therefore, a guest can create paths in its own namespace which are too long for management tools to access. Depending on the toolstack in use, a malicious guest administrator might cause some management tools and debugging operations to fail. For example, a guest administrator can cause "xenstore-ls -r" to fail. However, a guest administrator cannot prevent the host administrator from tearing down the domain. All systems using oxenstored are vulnerable. Building and using oxenstored is the default in the upstream Xen distribution, if the Ocaml compiler is available. Systems using C xenstored are not vulnerable.
33 CVE-2020-29481 668 2020-12-15 2021-07-21
4.6
None Local Low Not required Partial Partial Partial
An issue was discovered in Xen through 4.14.x. Access rights of Xenstore nodes are per domid. Unfortunately, existing granted access rights are not removed when a domain is being destroyed. This means that a new domain created with the same domid will inherit the access rights to Xenstore nodes from the previous domain(s) with the same domid. Because all Xenstore entries of a guest below /local/domain/<domid> are being deleted by Xen tools when a guest is destroyed, only Xenstore entries of other guests still running are affected. For example, a newly created guest domain might be able to read sensitive information that had belonged to a previously existing guest domain. Both Xenstore implementations (C and Ocaml) are vulnerable.
34 CVE-2020-29480 203 2020-12-15 2021-07-21
2.1
None Local Low Not required Partial None None
An issue was discovered in Xen through 4.14.x. Neither xenstore implementation does any permission checks when reporting a xenstore watch event. A guest administrator can watch the root xenstored node, which will cause notifications for every created, modified, and deleted key. A guest administrator can also use the special watches, which will cause a notification every time a domain is created and destroyed. Data may include: number, type, and domids of other VMs; existence and domids of driver domains; numbers of virtual interfaces, block devices, vcpus; existence of virtual framebuffers and their backend style (e.g., existence of VNC service); Xen VM UUIDs for other domains; timing information about domain creation and device setup; and some hints at the backend provisioning of VMs and their devices. The watch events do not contain values stored in xenstore, only key names. A guest administrator can observe non-sensitive domain and device lifecycle events relating to other guests. This information allows some insight into overall system configuration (including the number and general nature of other guests), and configuration of other guests (including the number and general nature of other guests' devices). This information might be commercially interesting or might make other attacks easier. There is not believed to be exposure of sensitive data. Specifically, there is no exposure of VNC passwords, port numbers, pathnames in host and guest filesystems, cryptographic keys, or within-guest data.
35 CVE-2020-29479 732 DoS 2020-12-15 2021-07-21
7.2
None Local Low Not required Complete Complete Complete
An issue was discovered in Xen through 4.14.x. In the Ocaml xenstored implementation, the internal representation of the tree has special cases for the root node, because this node has no parent. Unfortunately, permissions were not checked for certain operations on the root node. Unprivileged guests can get and modify permissions, list, and delete the root node. (Deleting the whole xenstore tree is a host-wide denial of service.) Achieving xenstore write access is also possible. All systems using oxenstored are vulnerable. Building and using oxenstored is the default in the upstream Xen distribution, if the Ocaml compiler is available. Systems using C xenstored are not vulnerable.
36 CVE-2020-29040 193 DoS +Priv 2020-11-24 2021-07-21
4.6
None Local Low Not required Partial Partial Partial
An issue was discovered in Xen through 4.14.x allowing x86 HVM guest OS users to cause a denial of service (stack corruption), cause a data leak, or possibly gain privileges because of an off-by-one error. NOTE: this issue is caused by an incorrect fix for CVE-2020-27671.
37 CVE-2020-28368 203 +Info 2020-11-10 2021-07-21
2.1
None Local Low Not required Partial None None
Xen through 4.14.x allows guest OS administrators to obtain sensitive information (such as AES keys from outside the guest) via a side-channel attack on a power/energy monitoring interface, aka a "Platypus" attack. NOTE: there is only one logically independent fix: to change the access control for each such interface in Xen.
38 CVE-2020-27674 119 Overflow +Priv 2020-10-22 2021-07-21
4.6
None Local Low Not required Partial Partial Partial
An issue was discovered in Xen through 4.14.x allowing x86 PV guest OS users to gain guest OS privileges by modifying kernel memory contents, because invalidation of TLB entries is mishandled during use of an INVLPG-like attack technique.
39 CVE-2020-27673 400 DoS 2020-10-22 2021-07-21
4.9
None Local Low Not required None None Complete
An issue was discovered in the Linux kernel through 5.9.1, as used with Xen through 4.14.x. Guest OS users can cause a denial of service (host OS hang) via a high rate of events to dom0, aka CID-e99502f76271.
40 CVE-2020-27672 362 DoS +Priv 2020-10-22 2021-07-21
6.9
None Local Medium Not required Complete Complete Complete
An issue was discovered in Xen through 4.14.x allowing x86 guest OS users to cause a host OS denial of service, achieve data corruption, or possibly gain privileges by exploiting a race condition that leads to a use-after-free involving 2MiB and 1GiB superpages.
41 CVE-2020-27671 269 DoS +Priv 2020-10-22 2021-07-21
6.9
None Local Medium Not required Complete Complete Complete
An issue was discovered in Xen through 4.14.x allowing x86 HVM and PVH guest OS users to cause a denial of service (data corruption), cause a data leak, or possibly gain privileges because coalescing of per-page IOMMU TLB flushes is mishandled.
42 CVE-2020-27670 345 DoS +Priv 2020-10-22 2021-01-19
6.9
None Local Medium Not required Complete Complete Complete
An issue was discovered in Xen through 4.14.x allowing x86 guest OS users to cause a denial of service (data corruption), cause a data leak, or possibly gain privileges because an AMD IOMMU page-table entry can be half-updated.
43 CVE-2020-25604 362 DoS 2020-09-23 2020-11-11
1.9
None Local Medium Not required None None Partial
An issue was discovered in Xen through 4.14.x. There is a race condition when migrating timers between x86 HVM vCPUs. When migrating timers of x86 HVM guests between its vCPUs, the locking model used allows for a second vCPU of the same guest (also operating on the timers) to release a lock that it didn't acquire. The most likely effect of the issue is a hang or crash of the hypervisor, i.e., a Denial of Service (DoS). All versions of Xen are affected. Only x86 systems are vulnerable. Arm systems are not vulnerable. Only x86 HVM guests can leverage the vulnerability. x86 PV and PVH cannot leverage the vulnerability. Only guests with more than one vCPU can exploit the vulnerability.
44 CVE-2020-25603 401 DoS +Info 2020-09-23 2021-07-21
4.6
None Local Low Not required Partial Partial Partial
An issue was discovered in Xen through 4.14.x. There are missing memory barriers when accessing/allocating an event channel. Event channels control structures can be accessed lockless as long as the port is considered to be valid. Such a sequence is missing an appropriate memory barrier (e.g., smp_*mb()) to prevent both the compiler and CPU from re-ordering access. A malicious guest may be able to cause a hypervisor crash resulting in a Denial of Service (DoS). Information leak and privilege escalation cannot be excluded. Systems running all versions of Xen are affected. Whether a system is vulnerable will depend on the CPU and compiler used to build Xen. For all systems, the presence and the scope of the vulnerability depend on the precise re-ordering performed by the compiler used to build Xen. We have not been able to survey compilers; consequently we cannot say which compiler(s) might produce vulnerable code (with which code generation options). GCC documentation clearly suggests that re-ordering is possible. Arm systems will also be vulnerable if the CPU is able to re-order memory access. Please consult your CPU vendor. x86 systems are only vulnerable if a compiler performs re-ordering.
45 CVE-2020-25602 755 DoS 2020-09-23 2020-11-11
4.6
None Local Low ??? None None Complete
An issue was discovered in Xen through 4.14.x. An x86 PV guest can trigger a host OS crash when handling guest access to MSR_MISC_ENABLE. When a guest accesses certain Model Specific Registers, Xen first reads the value from hardware to use as the basis for auditing the guest access. For the MISC_ENABLE MSR, which is an Intel specific MSR, this MSR read is performed without error handling for a #GP fault, which is the consequence of trying to read this MSR on non-Intel hardware. A buggy or malicious PV guest administrator can crash Xen, resulting in a host Denial of Service. Only x86 systems are vulnerable. ARM systems are not vulnerable. Only Xen versions 4.11 and onwards are vulnerable. 4.10 and earlier are not vulnerable. Only x86 systems that do not implement the MISC_ENABLE MSR (0x1a0) are vulnerable. AMD and Hygon systems do not implement this MSR and are vulnerable. Intel systems do implement this MSR and are not vulnerable. Other manufacturers have not been checked. Only x86 PV guests can exploit the vulnerability. x86 HVM/PVH guests cannot exploit the vulnerability.
46 CVE-2020-25601 400 DoS 2020-09-23 2021-07-21
4.9
None Local Low Not required None None Complete
An issue was discovered in Xen through 4.14.x. There is a lack of preemption in evtchn_reset() / evtchn_destroy(). In particular, the FIFO event channel model allows guests to have a large number of event channels active at a time. Closing all of these (when resetting all event channels or when cleaning up after the guest) may take extended periods of time. So far, there was no arrangement for preemption at suitable intervals, allowing a CPU to spend an almost unbounded amount of time in the processing of these operations. Malicious or buggy guest kernels can mount a Denial of Service (DoS) attack affecting the entire system. All Xen versions are vulnerable in principle. Whether versions 4.3 and older are vulnerable depends on underlying hardware characteristics.
47 CVE-2020-25600 119 DoS Overflow 2020-09-23 2021-07-21
4.9
None Local Low Not required None None Complete
An issue was discovered in Xen through 4.14.x. Out of bounds event channels are available to 32-bit x86 domains. The so called 2-level event channel model imposes different limits on the number of usable event channels for 32-bit x86 domains vs 64-bit or Arm (either bitness) ones. 32-bit x86 domains can use only 1023 channels, due to limited space in their shared (between guest and Xen) information structure, whereas all other domains can use up to 4095 in this model. The recording of the respective limit during domain initialization, however, has occurred at a time where domains are still deemed to be 64-bit ones, prior to actually honoring respective domain properties. At the point domains get recognized as 32-bit ones, the limit didn't get updated accordingly. Due to this misbehavior in Xen, 32-bit domains (including Domain 0) servicing other domains may observe event channel allocations to succeed when they should really fail. Subsequent use of such event channels would then possibly lead to corruption of other parts of the shared info structure. An unprivileged guest may cause another domain, in particular Domain 0, to misbehave. This may lead to a Denial of Service (DoS) for the entire system. All Xen versions from 4.4 onwards are vulnerable. Xen versions 4.3 and earlier are not vulnerable. Only x86 32-bit domains servicing other domains are vulnerable. Arm systems, as well as x86 64-bit domains, are not vulnerable.
48 CVE-2020-25599 362 DoS +Info 2020-09-23 2021-07-21
4.4
None Local Medium Not required Partial Partial Partial
An issue was discovered in Xen through 4.14.x. There are evtchn_reset() race conditions. Uses of EVTCHNOP_reset (potentially by a guest on itself) or XEN_DOMCTL_soft_reset (by itself covered by XSA-77) can lead to the violation of various internal assumptions. This may lead to out of bounds memory accesses or triggering of bug checks. In particular, x86 PV guests may be able to elevate their privilege to that of the host. Host and guest crashes are also possible, leading to a Denial of Service (DoS). Information leaks cannot be ruled out. All Xen versions from 4.5 onwards are vulnerable. Xen versions 4.4 and earlier are not vulnerable.
49 CVE-2020-25598 670 DoS 2020-09-23 2020-11-11
2.1
None Local Low Not required None None Partial
An issue was discovered in Xen 4.14.x. There is a missing unlock in the XENMEM_acquire_resource error path. The RCU (Read, Copy, Update) mechanism is a synchronisation primitive. A buggy error path in the XENMEM_acquire_resource exits without releasing an RCU reference, which is conceptually similar to forgetting to unlock a spinlock. A buggy or malicious HVM stubdomain can cause an RCU reference to be leaked. This causes subsequent administration operations, (e.g., CPU offline) to livelock, resulting in a host Denial of Service. The buggy codepath has been present since Xen 4.12. Xen 4.14 and later are vulnerable to the DoS. The side effects are believed to be benign on Xen 4.12 and 4.13, but patches are provided nevertheless. The vulnerability can generally only be exploited by x86 HVM VMs, as these are generally the only type of VM that have a Qemu stubdomain. x86 PV and PVH domains, as well as ARM VMs, typically don't use a stubdomain. Only VMs using HVM stubdomains can exploit the vulnerability. VMs using PV stubdomains, or with emulators running in dom0, cannot exploit the vulnerability.
50 CVE-2020-25597 119 DoS Overflow 2020-09-23 2020-11-11
6.1
None Local Low Not required Partial Partial Complete
An issue was discovered in Xen through 4.14.x. There is mishandling of the constraint that once-valid event channels may not turn invalid. Logic in the handling of event channel operations in Xen assumes that an event channel, once valid, will not become invalid over the life time of a guest. However, operations like the resetting of all event channels may involve decreasing one of the bounds checked when determining validity. This may lead to bug checks triggering, crashing the host. An unprivileged guest may be able to crash Xen, leading to a Denial of Service (DoS) for the entire system. All Xen versions from 4.4 onwards are vulnerable. Xen versions 4.3 and earlier are not vulnerable. Only systems with untrusted guests permitted to create more than the default number of event channels are vulnerable. This number depends on the architecture and type of guest. For 32-bit x86 PV guests, this is 1023; for 64-bit x86 PV guests, and for all ARM guests, this number is 4095. Systems where untrusted guests are limited to fewer than this number are not vulnerable. Note that xl and libxl limit max_event_channels to 1023 by default, so systems using exclusively xl, libvirt+libxl, or their own toolstack based on libxl, and not explicitly setting max_event_channels, are not vulnerable.
Total number of vulnerabilities : 371   Page : 1 (This Page)2 3 4 5 6 7 8
CVE is a registred trademark of the MITRE Corporation and the authoritative source of CVE content is MITRE's CVE web site. CWE is a registred trademark of the MITRE Corporation and the authoritative source of CWE content is MITRE's CWE web site. OVAL is a registered trademark of The MITRE Corporation and the authoritative source of OVAL content is MITRE's OVAL web site.
Use of this information constitutes acceptance for use in an AS IS condition. There are NO warranties, implied or otherwise, with regard to this information or its use. Any use of this information is at the user's risk. It is the responsibility of user to evaluate the accuracy, completeness or usefulness of any information, opinion, advice or other content. EACH USER WILL BE SOLELY RESPONSIBLE FOR ANY consequences of his or her direct or indirect use of this web site. ALL WARRANTIES OF ANY KIND ARE EXPRESSLY DISCLAIMED. This site will NOT BE LIABLE FOR ANY DIRECT, INDIRECT or any other kind of loss.